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Abstract

Recently, an extensive study of 2,748 polar bears (Ursus maritimus) from across their cir-
cumpolar range was published in PLOS ONE, which used microsatellites and mitochondrial
haplotypes to apparently show altered population structure and a dramatic change in direc-
tional gene flow towards the Canadian Archipelago—an area believed to be a future refu-
gium for polar bears as their southernmost habitats decline under climate change. Although
this study represents a major international collaborative effort and promised to be a baseline
for future genetics work, methodological shortcomings and errors of interpretation under-
mine some of the study’s main conclusions. Here, we present a reanalysis of this data in
which we address some of these issues, including: (1) highly unbalanced sample sizes and
large amounts of systematically missing data; (2) incorrect calculation of Fsrand of signifi-
cance levels; (3) misleading estimates of recent gene flow resulting from non-convergence
of the program BavesAss. In contrast to the original findings, in our reanalysis we find six
genetic clusters of polar bears worldwide: the Hudson Bay Complex, the Western and East-
ern Canadian Arctic Archipelago, the Western and Eastern Polar Basin, and—importantly
—we reconfirm the presence of a unique and possibly endangered cluster of bears in Nor-
wegian Bay near Canada’s expected last sea-ice refugium. Although polar bears’ abun-
dance, distribution, and population structure will certainly be negatively affected by ongoing
—and increasingly rapid—Iloss of Arctic sea ice, these genetic data provide no evidence of
strong directional gene flow in response to recent climate change.

Introduction

Polar bears (Ursus maritimus) are Holarctic marine mammals that are dependent on sea ice as
a platform for mating, reproduction, and locomotion. The southern boundary of their distribu-
tion is limited by the extent of the sea ice, which forms the habitat for their primary prey,
pagophilic seals such as ringed seals (Pusa hispida) and bearded seals (Erignathus barbatus).
Though long-distance swimming [1] and overland migration [2] are possible, open water,
land, and multiyear ice—which is too thick for seals to create breathing holes—generally form
barriers to movement and gene flow [3, 4]. Although polar bears have large home ranges [5]
and are capable of travelling vast distances [6], gene flow among subpopulations appears to be
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limited [7]. Currently, 19 management units (MUs) of polar bears are recognized globally,
including the Arctic Basin, which is believed to be poor-quality habitat that hinders movement
of bears across the area of the North Pole [8]. MUs have been delineated based on radio-telem-
etry data (primarily of females), hunter tag returns (primarily of males), and genetic data [3, 4,
8-11].

The genetic structure of polar bears has been well characterized in a number of previous
studies. The most important of these studies used 16 microsatellites and assignment tests to
detect four moderately differentiated genetic clusters across the Arctic, corresponding to the
Hudson Bay Complex, the Canadian Arctic Archipelago, the Polar Basin, and Norwegian Bay
[4]. Each of these clusters is represented in Canada, and all were recently re-detected in a popu-
lation genetics study of Canadian polar bears using newly collected samples and thousands of
single-nucleotide polymorphisms (SNPs) [12]. Of particular interest is the small, isolated Nor-
wegian Bay MU of the Canadian High Arctic, which is separated from surrounding MUs by
thick ice, land, and polynyas [3, 13], and which has been reported as genetically divergent [4,
12] and perhaps phenotypically distinct [3]. Other key population genetics findings include dif-
ferentiation of Akimiski Island from the rest of Hudson Bay [14-16], east-west differentiation
in the Polar Basin [17] (however, cf. [18]), and differentiation in the Canadian Archipelago in
the area of the Gulf of Boothia and M’Clintock Channel MUs [19].

In a recent study published in PLOS ONE, Peacock et al., 2015 [20] present an analysis
based on an impressive dataset of up to 21 nuclear microsatellites and the mitochondrial con-
trol region (plus tRNA"™, tRNA™, and partial cytb) obtained from 2748 and 411 polar bears
respectively. Individuals were included from 18 of 19 global MUs (omitting the largely unin-
habitable Arctic Basin). Key findings from this study include: (1) a revision of global popula-
tion genetic structure for polar bears, with three—four major genetic clusters differing
somewhat from those that have previously been reported, i.e. [4, 12]: the Canadian Arctic
Archipelago, Southern Canada, and the Polar Basin (further subdivided into eastern and west-
ern sub-clusters); (2) highly directional recent gene flow into the Canadian Arctic Archipelago
from Southern Canada and the Eastern Polar Basin, perhaps due to altered sea-ice conditions
caused by climate change, (3) male-biased gene flow, (4) a possible role for the Canadian Arctic
Archipelago (and other scattered areas such as the Barents Sea) as interglacial refugia. Most
striking among their results, however, is the disappearance of the Norwegian Bay genetic clus-
ter—an important change that is never discussed in Peacock et al., 2015 [20].

Upon examination of the article’s methods and supplementary material, we discovered a
number of serious errors that call into question the population grouping used in the paper and
other conclusions. These include the following (all references to tables and figures are those
from Peacock et al., 2015 [20]):

o Large amounts of systematically missing data (i.e., genotypes for 5/21 microsatellite loci are
missing in at least 6/18 MUs) and differences in sample sizes among MUs that are of two
orders of magnitude (S1 Table in [20]).

« Miscalculation of Fsrand other measures of genetic differentiation because of the retention
of loci with missing data, such that average pairwise Fsr between all MUs globally is actually
negative for microsatellites (-0.03), with values ranging as low as —0.26 (S5 Table; S4 Fig in
[20]).

« Bonferroni correction of significance thresholds that incorrectly account for the number of
loci rather than the number of tests (S4, S5, S6, S7 Tables in [20]).

« Probable non-convergence of the program BayesAss (S8 Table in [20]; see below for
explanation).
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o Retention of the M’Clintock Channel, Norwegian Bay, and Viscount Melville MUs in popu-
lation-level analyses of mitochondrial DNA (mtDNA) despite small sample sizes (i.e., N < 3)
that are inadequate for estimating haplotype frequencies, and treatment of the Laptev Sea
MU as a single subpopulation despite huge geographical discontinuity in sampling and sig-
nificant deviation from Hardy-Weinberg equilibrium (S1 Table in [20]).

Non-convergence of BayesAss

The most important conclusion in Peacock et al., 2015 [20] is that there has been a recent
influx of polar bears into the Canadian Arctic Archipelago from Southern Canada (and the
Eastern Polar Basin) in response to recent climate change. They also report a surprising 29-fold
difference in directional gene flow from the Eastern Polar Basin to the Western Polar Basin.
However, the results given in the Supplementary Material (S8 Table of Peacock et al., 2015
[20]) strongly suggest that their BavEsAss analysis of recent gene flow failed to converge. Non-
convergence is a common problem for BavesAss [21, 22], and non-converged runs often show
a bimodal distribution of proportions of non-migrants (Prop,,o,._mig) With some populations
having Prop,,on.mig < 0.73 and the remainder having Prop,,,,-mig > 0.9 [21]. Non-convergence
is particularly likely when Fgr values are low, and immigration rates may be particularly
untrustworthy if they have narrow confidence intervals near one of the prior bounds (i.e., 0 or
1/3) [22]. This is because BavEsAss bounds Prop,,o,.-mig between 0.667 and 1 [22, 23]. In S8
Table of Peacock et al., 2015 [20], Prop,on-mig (and 95% Cls) are reported for the four genetic
clusters as: Eastern Polar Basin = 0.941 (0.888-0.993), Western Polar Basin = 0.678 (0.657-
0.699), Canadian Archipelago = 0.699 (0.621-0.777), and Southern Canada = 0.952 (0.912-
0.991). These results follow the bimodal distribution described above, and all 95% CIs either
overlap the lower bound or are <0.01 from the upper bound. Although it is stated in Peacock
et al., 2015 [20] that 3-4 runs resulted in similar estimates, this does not indicate that runs con-
verged or that results are accurate, because multiple runs often get trapped near the program’s
bounds [21].

To address some of these issues, we reanalysed the original dataset. Because the analyses in
Peacock et al., 2015 [20] were numerous and wide-ranging, we focused primarily on estimates
of contemporary population structure, noting that the generation of contemporary genetic
clusters was an important first step for some additional downstream analyses in the original
paper, since they formed the groupings between which to test migration, etc. Therefore, this
reanalysis may also have implications for some other findings in Peacock et al., 2015 [20]. In
our opinion, it represents our best estimate to date of the contemporary worldwide population
structure of polar bears.

Materials and Methods
Nuclear microsatellite data

We downloaded the microsatellite genotypes used in Peacock et al., 2015 [20] from datadryad.
org (doi:10.5061/dryad.v2j1r). Individual-specific information, such as lat-long coordinates,
year of sampling, population of sampling, sex, age, etc. are available in Table S11 of Peacock

et al., 2015 [20]. Methods of DNA extraction, microsatellite genotyping, and genotype quality
control are provided in S1 File of Peacock et al., 2015 [20]. Microsatellite genotypes were
heavily biased towards the Davis Strait (N = 1050) and the Barents Sea (N = 454), Chukchi Sea
(N =266), and Southern Beaufort Sea (N = 233) MUs. Genetic data were compiled from dispa-
rate sources (each having been genotyped at different sets of loci), and therefore there are
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systematic patterns of missing data (Fig 1). Notably, missing data exceeds 80% for marker
MU?26 and 30% in the Barents Sea MU. Because various programs treat missing data differently
(e.g., STRUCTURE ignores missing genotypes, GENODIVE assigns missing genotypes random val-
ues based on allele frequencies, and BayesAss imputes missing genotypes), we reduced the data-
set to include only the 14 loci reliably genotyped in all 18 MUs (Fig 1). After an initial analysis,
we noticed that Gulf of Boothia was unexpectedly quite divergent from other MUs when using
the stepwise-mutation model. We then discovered that the Peacock et al., 2015 [20] genotypes
for the locus CXX20 were duplicated from the locus CXX110 for many Gulf of Boothia individ-
uals. We replaced these errant CXX20 genotypes with the original genotypes from Paetkau
etal., 1999 [4].

In Peacock et al., 2015 [20], first-degree relatives were excluded based on field data; how-
ever, their microsatellite dataset for Davis Strait includes 1050 individuals sampled mostly
between 2005 and 2007 (out of an estimated population size of 2158 individuals [24]), and
therefore likely still includes many unknown first- and second-degree relatives, the presence of
which can cause inaccurate STRUCTURE results [25, 26]. STRUCTURE also struggles with unbal-
anced sample sizes [27] and typical pairwise Fsr calculations can be biased by unequal sample
sizes as well [28]. Therefore, for MUs having more than 30 microsatellite-genotyped individu-
als, we used the sample() function in R 3.2.0 [29] to randomly select 30 fully genotyped individ-
uals for inclusion in the reduced dataset used in this paper. We used 30 individuals as a cutoff
because this was the number used in the last global analysis of population structure [4], and
because this number has been shown to be adequate for estimating allele frequencies and Fgr
from microsatellite data [30] (however, cf. [31]). One individual from the Laptev Sea had miss-
ing data at all loci and was discarded. Our final dataset contained 495 individuals (Table A of
S1 File). After filtering all loci and individuals, we checked for Hardy-Weinberg equilibrium in
each subpopulation in GENODIVE 2.0b27 [32] using Nei’s G statistic [33] (1000 permutations)
and for linkage disequilibrium (LD) between loci using Fisher’s method across MUs in
GENEPOP 4.3 [34] (default settings). Unless otherwise indicated, a significance level of a = 0.05
was used for all tests, with a Holm correction [35] in the p.adjust() function of R to account for
multiple tests where appropriate.

Mitochondrial sequence data

We obtained haplotypes from GenBank according to accession numbers and haplotype counts
specified in S2 Table of Peacock et al., 2015 [20]. The haplotypes UMACR17 and UMACR87
were identical, so we combined these haplotype counts in our dataset. We aligned sequences
using MAFFT 7.221 (1PAM/x = 2 scoring matrix and default settings for auto-strategy; [36])
and after trimming extraneous bases from the ends of the alignment, we found that UMACRS88
and UMACR3 were also identical, so we merged these counts as well. We estimated the optimal
substitution model under the corrected Akaike information criterion (AICc; [37]) using tMo-
DELTEST 2.1.7 (default settings; [38, 39]) and calculated summary statistics for mtDNA using
ARLEQUIN 3.5.2.2 [40].

Genetic differentiation, principal components analysis, and AMOVAs

To determine if microsatellites were likely to underestimate population differentiation because
of high mutation rates or marker diversity, we tested for a correlation between Ggrand Hg
using CoD1D1 1.0 (100,000 permutations; [41]). We calculated pairwise Fgr values [42, 43]
between MUs, as well as AMOV As [43] using GENODIVE. We also calculated pairwise Rgy [43,
44] using SPAGEDI 1.4b [45]; however, these results are not presented because an allele-size
permutation test (10,000 permutations; [46]) suggested that microsatellite allele sizes were
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Fig 1. Missing data in Peacock et al., 2015 [20]. The size of the square at each management unit-locus intersection is proportional to the amount of
missing data at that locus in that management unit. Management unit abbreviations are as in Table 1. Asterisks denote loci that were retained for the

reanalysis presented in this paper.

doi:10.1371/journal.pone.0148967.g001

uninformative. To explore the data, we performed a principal components analysis (PCA) of
individual genetic variation using ADEGENET 1.4-2 (centred and scaled, missing data set to
mean; [47, 48]). To examine the robustness of our primary conclusion (i.e., the divergence of
Norwegian Bay) to the 30-individual sampling process we used to generate our reduced data-
set, we also plotted PCAs for 100 additional randomly generated subsamples of the full dataset.
We generated a population tree using the recommendations for the infinite-allele model in
Takezaki and Nei, 1996 [49]: we estimated the topology of the tree with unweighted pair-group
method with arithmetic mean (UPGMA) in POPTREEW [50] using Nei’s D4 [51], then we
unrooted the tree and estimated branch lengths using Nei’s standard distance (Dg) [52] using
non-negative least squares in PHANGORN 1.99-13 [53].

For mtDNA, we calculated pairwise Fsr and @7 values (and their corresponding AMOV As
[42]) using ArLEQUIN. For ®gr calculations, distances between haplotypes were calculated using
the Tamura & Nei substitution model [54] with gamma-distributed rate heterogeneity (o =
0.021), which was determined as the optimal model of evolution under the AICc. Significance
of all pairwise measures was assessed using 10,000 permutations. We also conducted exact tests
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of population differentiation in GENEPoP for microsatellites and in ARLEQUIN for mtDNA
(default settings). Significance of AMOV As was not tested because of circularity in the logic of
doing so for pre-clustered groups [55]. Pairwise Fsr values for microsatellites and pairwise Qg
values for mtDNA were compared with the expectation of F,(nu) = 1 — e*2>*nll-Fsr(mi] [56],
as was used in Peacock et al., 2015 [20], to determine whether polar bears exhibit male-biased
gene flow.

Clustering methods and isolation by distance

The settings used for STRUCTURE analysis (e.g., number of repetitions, length of burn-in, priors)
were not given in Peacock et al., 2015 [20]. We followed the recommendations of Gilbert ef al.,
2012 [57]: 20 independent runs of 200,000 iterations (incl. 100,000 burn-in iterations) using
the correlated allele frequencies model with no location prior using STRUCTURE 2.3.4 [58, 59].
Runs were clustered and averaged using CLUMPAK 1.1 (default settings; [60]), and support
for K-values was generated in CLUMPAK’s “Best K” feature using the Evanno method [61]
and the Pritchard method [62]. As has been recommended in the case of low genetic differenti-
ation [63], we compared the output from STRUCTURE with output from BAPS 6.0 using its non-
spatial admixture mode (Kax = 20; Nyyyipy = 55 Njp = 1005 Nyof ing = 2005 Noo i = 105 [64, 65]). To
infer genetic clusters for individuals used in the original study but not included in our reduced
dataset, we used trained clustering in BAPS [65-67], using non-admixed individuals from each
genetic cluster as the training set. We also grouped MUs using AMOV A-based K-means clus-
tering in GENODIVE for K = 6, which was found to be the optimal K-value in STRUCTURE analyses.
Finally, to confirm the hierarchical structure (i.e., east-west differentiation) that we detected
within the Canadian Arctic Archipelago and the Polar Basin, we ran STRUCTURE on the full set
of samples collected within each of these MUs using LOCPRIOR = 1 to improve the power to
detect weak differentiation [68].

Isolation by distance (IBD) can confound clustering analyses [69]. Because the optimal
STRUCTURE results for K = 6 showed an east—west cline in Q-values across the Polar Basin, and
because there was a large sampling discontinuity in the middle of this cline (i.e., in the Laptev
Sea MU), we suspected that one of these two clusters may have been spuriously generated by
IBD. To test for IBD across this region, we performed a Mantel test between genetic distances
[70] and geographical distances (calculated in SPAGED) for all individuals that were highly
assigned (i.e., CLUMPAK-averaged Q > 0.7) to either the Eastern or Western Basin clusters
(N =62). To determine if IBD alone might be responsible for observed east-west genetic clus-
tering in the Basin, we performed a partial Mantel test of association between a matrix of
genetic distances and a model matrix denoting whether each pair of individuals belonged to
the same genetic cluster (= 0) or not (= 1), while conditioning on geographical distances (cf.
[71]). Both tests were conducted in VEGAN 2.2-1 [72], using 10,000 permutations to test for
significance.

Migration rates

Using BavesAss 3.0.3 [73], we attempted to re-estimate rates of gene flow between five of our
six regions (Eastern & Western Polar Basin, Eastern & Western Archipelago, Hudson Com-
plex) and—for comparison—between three of the four major regions identified as optimal by
Paetkau et al., 1999 [4] and in our K = 4 STRUCTURE results (i.e., Polar Basin, Archipelago, Hud-
son Complex). We omitted Norwegian Bay from both of these runs because its small sample
size might result in non-converged estimates [21], and before running BavesAss, we used
assignment tests in GENODIVE to remove any significant (default settings, 1000 permutations)
immigrants from Norwegian Bay found in other MUs. Because our dataset of ~30 samples per
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MU does not accurately reflect differences in MU population size that would affect gene-flow
estimates when MUs were merged into regions, we generated balanced subsets using the sam-
pling regimes shown in Table D of S1 File. Individuals were selected for inclusion in these sub-
sets blindly (i.e., without viewing their genetic cluster membership) while attempting to obtain
geographical balance and high sample sizes of 100-150 individuals per region, which have
been shown to be correlated with the probability of convergence [21]. For direct comparison
with Peacock et al., 2015 [20], we also generated a balanced subset corresponding to their four
regions (Eastern & Western Polar Basin, Archipelago, Hudson Complex). For all BAYESASs
runs, we followed the recommendations of Faubet et al., 2007 [22] (i.e., ten runs with different
random seeds, N;; = 21,000,000, Npy+_ir = 2,000,000, sampling interval = 2,000), and we used
the Bayesian deviance (as calculated in the calculateDeviance.R script from Meirmans, 2014
[21]) to select the best run. Convergence of parameter estimates in these best runs was also
assessed by manual examination of trace files, and by using the Heidelberger-and-Welch diag-
nostics [74] in Boa 1.1.8-1 [75]. Significant differences in proportions of immigrant ancestry
were assessed using non-overlapping 95% CIs. To ensure that we were not unintentionally
broadening CIs by using only 14 loci, we also performed runs for all datasets including all 21
loci. Finally, to test whether the placement of the Laptev Sea MU (which straddles the apparent
boundary between the Western and Eastern Polar Basin clusters) affected our results, we con-
sidered a run that excluded this MU entirely.

Results
Nuclear microsatellite and mitochondrial DNA statistics

We found that one MU, the Laptev Sea, exhibits significant heterozygote deficiency (Gs = 0.15,
P < 0.001; Table 1), likely because of a Wahlund effect [76] caused by discontinuous sampling
in this MU: there is a >1,400 km gap between western and eastern Laptev Sea samples. Because
subpopulation deviation from Hardy-Weinberg equilibrium affects F-statistics, we followed
Paetkau et al., 1999 [4] in excluding the Laptev Sea from all MU-based analyses such as LD and
pairwise Fgr. For AMOV As and BavesAss analyses of gene flow among major genetic clusters,
we apportioned the Laptev Sea MU’s eastern and western samples into the eastern and western
Polar Basin clusters, respectively.

No locus deviated significantly from Hardy-Weinberg equilibrium. Two pairs of loci were
in significant LD (G10B-G10]J, G10B-G10X); however, both had P = 0 in one MU, which
causes problems for Fisher’s method [77], and neither pair is located on the same genomic scaf-
fold [12]. Even if the scaffolds were contiguous within a chromosome, these markers would be
separated by >5 Mb, and at these distances, LD is negligible in polar bears [12]. Therefore, we
assumed these were false positives, and we elected to keep all 14 microsatellite markers for
subsequent analysis. Hs and G were not significantly negatively correlated (r = -0.008,

P =0.467), indicating that microsatellites were unlikely to underestimate population differenti-
ation because of high mutation rates or marker diversity. Three MUs had inadequate sampling
(i.e., N <3, k=1) to accurately determine mitochondrial haplotype frequencies: namely,
M’Clintock Channel, Norwegian Bay, and Viscount Melville Sound. Therefore, we excluded
these MUs in pairwise population comparisons and AMOV As of mtDNA.

Clustering of individuals and management units

CLUMPAK-averaged admixture plots for K = 2-7 are shown in Fig 2. Progressively, they show
the addition of clusters that largely correspond to the following, with some apparent admixture
and migration: K = 2: the Polar Basin, K = 3: the Canadian Arctic Archipelago, K = 4: Norwe-

gian Bay, K = 5: west—east differentiation in the Polar Basin, K = 6: west—east differentiation in
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Table 1. Genetic diversity statistics for 18 management units of polar bears. For microsatellite data, a maximum of 30 individuals have been retained
from each management unit from the original dataset of 2,748 individuals, and only the 14 loci indicated in Fig 1 have been used. Molecular diversity indices
for mitochondrial DNA were calculated in ARLEQUIN using pairwise differences with no gamma correction.

Nuclear microsatellites Mitochondrial DNA

Management unit (abbr.) N YoC K % niss Ho He Gis N YoC K h m
Baffin Bay (BB) 30 2003 6.43 0 0.74 0.73 —-0.01 30 2007 11 0.88 0.0059
Barents Sea (BS) 30 2000 6.36 0 0.66 0.66 0.00 30 1998 13 0.90 0.0057
Chukchi Sea (CS) 30 1997 7.00 0 0.68 0.70 0.02 35 2000 17 0.93 0.0061
Davis Strait (DS) 30 2006 6.71 0 0.67 0.69 0.02 121 2006 21 0.87 0.0039

East Greenland (EG) 30 1990 6.50 0 0.66 0.67 0.02 - - - -
Foxe Basin (FB) 30 2002 6.29 0 0.71 0.69 -0.03 26 2008 6 0.71 0.0028
Gulf of Boothia (GB) 30 2001 6.29 0 0.70 0.72 0.02 16 2008 6 0.68 0.0034

Kane Basin (KB) 30 1994 6.43 0 0.73 0.72 —-0.01 - - - -
Kara Sea (KS) 17 1994 5.36 0 0.62 0.64 0.04 17 1994 7 0.84 0.0044
Laptev Sea (LP) 14 2000 5.79 2.6 0.59 0.70 0.15 14 2000 11 0.97 0.0061
Lancaster Sound (LS) 30 2002 6.57 0 0.74 0.71 —-0.03 34 2007 11 0.86 0.0066

M’Clintock Channel (MC) 14 1996 5.50 0 0.71 0.69 -0.03 2 2008 1 0 0

Northern Beaufort Sea (NB) 30 1989 6.79 0 0.68 0.69 0.00 — - — -

Norwegian Bay (NW) 30 1995 6.21 0 0.68 0.69 0.01 3 2008 1 0 0
Southern Beaufort Sea (SB) 30 2001 6.79 0 0.65 0.68 0.04 30 1997 15 0.94 0.0073
Southern Hudson Bay (SH) 30 2008 5.86 0 0.66 0.66 0.00 23 2008 8 0.58 0.0019

Viscount Melville Sound (VM) 30 1991 6.29 0 0.64 0.66 0.03 3 2008 1 0 0
Western Hudson Bay (WH) 30 1998 6.14 0 0.65 0.67 0.02 27 2007 9 0.86 0.0047

N, number of individuals genotyped; YoC, mean year of sample collection; K, number of alleles; %y;ss, percentage of genotypes missing; Ho, observed
heterozygosity; Hg, expected heterozygosity; Gs, heterozygosity-based estimator of individual-level inbreeding within a subpopulation; h, haplotype
diversity; m, nucleotide diversity. In the G;s column, boldface denotes significant deviation from Hardy—Weinberg equilibrium.

doi:10.1371/journal.pone.0148967.t001

the Canadian Arctic Archipelago, K = 7: apparent noise. Although the Evanno AK method
selected K = 2 (Fig 3b), likelihood was maximized at K = 6 (Fig 3a)—this was the number of
clusters preferred using the Pritchard method (Fig 3c), and there was also a small peak in AK at
this value.

The six genetic clusters we detected correspond roughly to: the Hudson Complex (incl. Lab-
rador), the Eastern Archipelago, the Western Archipelago, Norwegian Bay, the Eastern Polar
Basin, and the Western Polar Basin. Because these results were geographically defensible and
corresponded roughly with previously discovered genetic structure in the Archipelago [4] and
across the Polar Basin [17], we accepted K = 6 for our STRUCTURE analysis. Regional STRUCTURE
analyses using the full dataset and LOCPRIOR = 1 also detected east-west differentiation
within the Archipelago and within the Basin, with possible additional clusters present in the
Gulf of Boothia and in the Chukchi Sea (Fig B in S1 File). GENoDIVE clustering of MUs for
K = 6 reached similar conclusions as STRUCTURE (cf. shaded areas in Table 2), splitting the
Archipelago into Eastern (KB, BB, northern DS) and Western (VM, GB, MC, LS) clusters and
splitting the Polar Basin into Eastern (EG, KS, BS, eastern LP) and Western (SB, NB, CS, west-
ern LP) clusters.

There is significant IBD across the Polar Basin (Mantel test: » = 0.2354, P < 0.0001), though
genetic clustering remained marginally significant after accounting for IBD (partial Mantel
test: ¥ = 0.06391, P = 0.039). Therefore, we decided to retain both the Eastern and the Western
Basin clusters, though we note that traversable distances between individuals in this region will
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Fig 2. CLUMPAK-averaged StrucTure outputs for 20 independent runs of K = 2-7, which were clustered and averaged using CLUMPAK. Numbers
under each K-value indicate the proportion of runs that converged to the solution presented. Minority modes supported by at least two runs are provided in
Fig A'in S1 File. Management unit abbreviations are as in Table 1.

doi:10.1371/journal.pone.0148967.9002

be underestimated by SPAGED if it calculates distances over the poor-quality Arctic Basin
MU. Results are mapped in Fig 4.

Mixture analysis in BAPS found K = 6 as being optimal; however, one of these clusters con-
tained only a single individual with missing data at four loci, perhaps indicative of the unex-
pected effects that missing data can have upon such methods. This single-individual cluster
was discarded prior to admixture analysis. The remaining clusters were: the Hudson Complex,
the Eastern and Western Canadian Arctic Archipelago, the Polar Basin, and Norwegian Bay.
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Evanno method in CLUMPAK. (c) Probability of K calculated using the Pritchard method in CLUMPAK.

doi:10.1371/journal.pone.0148967.9003

Results of the BAPS admixture analysis based on these five clusters is found in Fig C of S1 File;
they differ from the optimal STRUCTURE results for K = 6 in that there is less admixture and no
distinction of the Eastern/Western Polar Basin. Trained clustering in BAPS using K = 5 gave
sensible estimates of genetic-cluster membership for all individuals not included in our main
study (Fig D of S1 File).
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Table 2. Pairwise Fsr values for nuclear microsatellites (below diagonal) and pairwise ®sr values for mitochondrial DNA (above diagonal); signifi-
cant values are bolded. MU abbreviations are as in Table 1. Solid lines demarcate the four major clusters discovered by Paetkau et al., 1999 [4], which cor-
respond to our STRucTURE results for K = 4. From left to right, these are: the Hudson Complex, the Canadian Arctic Archipelago, Norwegian Bay, and the Polar
Basin. Dotted lines denote the west—east clusters within the Basin and the Archipelago detected by K-means clustering in GEnoDive. These six clusters
include additional east-west substructure within the Archipelago and within the Polar Basin. DS is an admixture zone showing affinity for both Hudson Com-
plex and the Archipelago, with southern samples tending to belong to the Hudson Complex cluster and northern samples tending to belong to the Eastern
Archipelago cluster. LP has been excluded from all comparisons because it deviates significantly from Hardy—Weinberg equilibrium. For mitochondrial DNA,
MC, VM, and NW were omitted because sample sizes were too small (i.e., N < 3, k = 1) to accurately estimate haplotype frequencies.

SH WH FB DS BB KB LS GB MC VM NwW NB SB CS LP KS BS EG

SH = 0.11 0.04 0.11 0.06 0.15 0.00 0.16  0.05 0.44 0.12
WH 0.01 = 0.05 0.14 0.19 030 0.13 0.31 0.23 0.47 0.25
FB 0.01 0.01 = 0.06 0.06 0.19  0.05 023 0.13 0.47 0.14
DS 0.03 0.03 0.01 = 0.15 033 0.13 034 017 0.47 0.23
BB 0.05 0.05 0.03 0.01 = 0.02  0.02 0.10  0.06 0.20 0.03
KB 0.05 0.05 0.04 0.02 0.00 =

LS 0.05 005 004 0.02 0.01 0.01 = 0.09 0.02 0.09 0.13  0.10
GB 0.05 0.04 003 0.02 0.01 0.02 0.00 = 0.10  0.08 0.37 0.10

MC 006 005 004 003 0.02 0.01 0.00 0.01 =

VM 007 005 005 0.04 003 0.02 000 0.02 0.01 =

NwW 007 006 005 004 0.03 003 0.02 0.04 0.04 0.03 =

NB 009 008 006 005 004 0.04 002 0.04 0.03 0.03 0.05 =

SB 010 008 007 0.06 004 005 0.03 004 003 0.04 0.07 0.01 = 0.07 0.15 0.11

CS 010 009 007 007 004 005 004 005 003 004 006 000 0.00 = 0.18 0.08

LP -

KS 0.09 007 006 005 004 004 003 005 002 0.03 0.06 0.01 0.01 0.01 = 0.07

BS 010 008 007 005 004 004 004 005 003 005 0.07 0.02 0.02 0.02 0.01 =

EG 009 008 006 005 003 003 003 005 003 004 005 0.02 002 0.02 0.01 0.00 =

doi:10.1371/journal.pone.0148967.1002

Population differentiation

Our PCA and population tree reveal four broad groupings of MUs that correspond to the clus-
ters identified by our STRUCTURE results for K = 4 and by Paetkau et al., 1999 [4] (Fig 5): the
Polar Basin (CS, SB, BS, NB, EG, KS), the Archipelago (MC, VM, LS, BB, KB, GB), Norwegian
Bay (NW), and the Hudson Complex (DS, FB, WH, SH). These four groupings were also seen
in most of our other 100 randomly resampled subsets of individuals (Figs E and F of S1 File).
The six genetic clusters selected by GENODIVE explain ~3.9% of the nuclear genetic variation
and ~9.4% of genetic variation in mtDNA. MU designations within clusters explain 0.8% and
6.0% for microsatellites and mtDNA respectively (Tables 3, 4). Overall, MUs were slightly to
moderately differentiated (average pairwise microsatellite Fgr = 0.04). Tests of pairwise popula-
tion differentiation revealed many significant differences between major genetic clusters, but
few significant differences within clusters. In total, 121/136 (=89%) of population pairs were
significantly differentiated after a Holm correction based on nuclear Fgr, genic, or genotypic
differentiation (compared to only 20% in Peacock et al., 2015 [20], who also included tests for
Rgr). Importantly, all tests of genetic differentiation show that Norwegian Bay is significantly
differentiated from all other MUs (Table 2, Table B of S1 File). Though Gulf of Boothia differed
significantly from most nearby MUs in tests of genotypic and genic differentiation of nuclear
markers (Table B of S1 File), it was not as well differentiated from other members of the West-
ern Archipelago using pairwise Fgr or gy (Table 2) or tests of haplotypic differentiation for
mtDNA (Table C of S1 File).

PLOS ONE | DOI:10.1371/journal.pone.0148967 March 14,2016 11/25
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Fig 4. Sampling locations for 476 of the 495 polar bears used in this analysis; the remainder did not have lat-long coordinates. Individuals are
colour-coded by genetic cluster similarly to the colour scheme for K = 6 in Fig 2. Black samples are unassigned (i.e., Qnax < 0.5). Uncoloured individuals are
those that were used in the original study but were not included in our random subset of 30 individuals per management unit; their predicted cluster
memberships based on BAPS trained clustering are shown in Fig C of S1 File. Management unit abbreviations are as in Table 1. Approximate sea ice extent
during the breeding season is shown using measurements for April 15, 2008 [78], though there is great spatial heterogeneity in sea ice thickness and
concentration, as well as great intra-seasonal and inter-annual variability. Note that this map (and the data) does not reflect a 2014 boundary change
between NB and SB made by the territorial governments and the co-management boards with management authority for these two subpopulations, because
it has not yet been evaluated by the IUCN Polar Bear Specialist Group.

doi:10.1371/journal.pone.0148967.9004

Recent gene flow and sex-biased dispersal

All “best” BavesAss runs for each population grouping (selected based on the deviance) were at
stationarity after burn-in, according to Heidelberger-and-Welch diagnostics. Estimates were
surprisingly robust to large amounts of systematically missing data, as results for 14 loci and 21
loci were nearly identical in terms of means and confidence intervals (Fig 6); however, because
runs for 14 loci had larger effective sample sizes, we discuss these results below. All runs gave
highly similar estimates of gene flow among the Polar Basin, the Hudson Complex (incl.

PLOS ONE | DOI:10.1371/journal.pone.0148967 March 14,2016 12/25
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Fig 5. (a) Principal component analysis of genetic variation. Each point represents an individual; each
individual is connected to a label indicating the centroid of the management unit in which it was sampled. The
inertia ellipse for each management unit contains approximately two-thirds of all individuals sampled there.
(b) Population tree. The scale bar indicates Nei’s standard distance; branch lengths were estimated using
non-negative least squares, and the tree has an R? [79] of 0.903. Samples from the Laptev Sea (LP) have
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been excluded in (b) because a large spatial discontinuity in sampling in this management unit resulted in it
being significantly out of Hardy—Weinberg equilibrium. Management unit abbreviations are as in Table 1 and
are coloured as in Fig 4.

doi:10.1371/journal.pone.0148967.g005

Labrador), and the Canadian Arctic Archipelago. In no case was there a significant difference
in the proportion of migrants into any of these populations. Within these major clusters, BAYE-
sAss suggested highly directional gene flow from the Western Polar Basin into the Eastern
Polar Basin, and from the Western Archipelago into the Eastern Archipelago; however, these
highly directional estimates are likely untrustworthy, as discussed below. Immigration rates
and proportions of non-migrant ancestry are given in Tables E-G of S1 File. Exclusion of the
Laptev Sea MU did not change the estimates of migration (Table H of S1 File).

To test for sex-biased dispersal across MU boundaries, we plotted pairwise Fs for microsat-
ellites against pairwise ®gr for mtDNA, as in Peacock et al., 2015 [20] (Fig 7b). In contrast to
estimates from Peacock et al., 2015 [20], more points lie on or above the line of expectation
(i.e., the line at which microsatellites differentiate populations as well as mitochondrial haplo-
types), and the extreme values most supportive of strong male-biased dispersal, such as zero-
estimates for microsatellites Fg; and one-estimates for mtDNA ®g; are absent. Inferences of
sex-biased dispersal can also be made from the R-ratios of mitochondrial and nuclear F-statis-
tics from AMOVAs, where R<1 suggests female-biased dispersal and R>>4 suggests male-
biased dispersal [80]. In our AMOV As, R-ratios were ®gc:Fsc = 8.3:1 for genetic variance
among MUs within clusters and ®cr:Fcr = 2.4:1 for genetic variance among clusters.

Discussion
Worldwide population structure of polar bears

In contrast to Peacock et al., 2015 [20], but similarly to Paetkau et al., 1999 [4], we detected
four major genetic clusters of polar bears worldwide, additionally finding east-west sub-clus-
ters in the Polar Basin and in the Canadian Archipelago. These findings corroborate previous
studies of polar bear genetic structure [4, 12, 17, 19]. We note that we failed to detect a unique
genetic cluster of bears on Akimiski Island in James Bay (Southern Hudson Bay) [10, 14, 20],
which were not considered separately in this range-wide analysis because of low sample size.
Our pairwise Fsr values between MUs were very similar to those calculated by Paetkau et al.
1999 [4], and differ tremendously from those in Peacock et al., 2015 [20], which appear to have
been incorrectly calculated: most values in Peacock et al., 2015 [20] are negative, and they
range as low as —0.26. Although negative values from the Weir-and-Cockerham estimator of
Fgr [81] are possible (especially when sample sizes and sample variance in allele frequencies are
low), they are typically not this extreme. We were unable to reproduce Peacock et al., 2015

Table 3. Hierarchical analysis of molecular variance (AMOVA) for nuclear microsatellites among man-
agement units within the six genetic clusters identified in this paper and shown in Table 2. For this
analysis, we followed Peacock et al., 2015 [20] by including northern Davis Strait in the Eastern Archipelago
cluster and southern Davis Strait in the Hudson cluster. Western Laptev was included in the Western Basin
cluster and Eastern Laptev was included in the Eastern Basin cluster. However, results did not differ signifi-
cantly when the Laptev Sea and Davis Strait MUs were excluded entirely.

Source of variation % variance F-statistic F-value
Within individuals 94.32% Fir 0.057
Among individuals in MUs 1.07% Fis 0.011
Among MUs in clusters 0.79% Fsc 0.008
Among clusters 3.87% Fer 0.039

doi:10.1371/journal.pone.0148967.t003
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Table 4. Hierarchical analysis of molecular variance (AMOVA) for mitochondrial DNA among manage-
ment units within the six genetic clusters identified in this paper and shown in Table 2. Note that many
management units (incl. the entire Norwegian Bay cluster) were excluded entirely from this AMOVA because
of inadequate sampling. Because we lacked sample location information for downloaded haplotypes, we
were unable to split Davis Strait or the Laptev Sea into northern/southern or eastern/western samples; there-
fore, these MUs were removed for this calculation in addition to the MUs that were removed for low sample
sizes in Table 2.

Source of variation % variance @-statistic @-value
Among individuals in MUs 84.54% Dst 0.155
Among MUs in clusters 6.04% Psc 0.067
Among clusters 9.43% Dt 0.094

doi:10.1371/journal.pone.0148967.t004

[20]’s Fr values using GENODIVE, FSTAT, or Genepop on the full dataset; in all cases, the calcu-
lated values were similar to our own and those of Paetkau et al. 1999 [4]. Only when ARLEQUIN
was used under certain conditions were we able to reproduce these values. Specifically, the
errant values in Peacock et al., 2015 [20] are an artefact caused by large amounts of missing
data; they result only when one fails to enforce any missing-data cutoff in ArteQuIN (Table I of
S1 File). When a reasonable missing data cutoff (e.g., 5%) is used, then sensible Fsr values con-
sistent our own and those of Paetkau et al., 1999 [4] are produced (Table I of S1 File).

Under our grouping of MUs, the variance explained by genetic clusters (~4% for nuclear,
~9% for mitochondrial) was maximized through K-means clustering, and suggests moderate
divergence among clusters. The four major genetic clusters are mostly separated by landmasses
and multiyear ice that form barriers to gene flow for polar bears. The Hudson Complex and
the Canadian Archipelago are separated by Baffin Island, Labrador, and the Melville Peninsula
[3, 82]; the Archipelago and the Polar Basin are separated by Greenland in the east and by
Banks and Victoria Islands in the west [3, 83]; and Norwegian Bay and the Archipelago are sep-
arated by thick multiyear ice, islands, and polynyas [3]. Genetic structure within the four major
clusters is likely driven by broad-scale site fidelity to breeding and denning areas [3, 84, 85] and
annual reuse of geographically predictable hunting grounds, such as tide cracks and lead sys-
tems [3, 86].

Based on our reanalysis of the original data from Peacock et al., 2015 [20], we have re-estab-
lished Norwegian Bay as a distinct genetic cluster of polar bears near the northernmost reaches
of Canada. Norwegian Bay is currently estimated to comprise 203 individuals (95% CI: 115-
291; [87]), and—together with the neighbouring Queen Elizabeth Islands—it has previously
been proposed as a separate designatable unit of polar bears based on ecological and genetic
factors [88]. The status of this cluster is particularly relevant for polar bear conservation, as it is
expected to coincide with Canada’s last sea-ice refugium [89]. This subpopulation has anec-
dotally been reported to be phenotypically unique [3], and we are currently conducting addi-
tional genetic analyses on this cluster, including genome scans on more recently collected
samples. The Norwegian Bay cluster was likely not revealed in the analyses of Peacock et al.,
2015 [20] because of highly unequal sample sizes, and perhaps also by the presence of many
related individuals in Davis Strait, which can confound STRUCTURE analyses [25-27]. In addi-
tion, genetic clusters in Peacock et al., 2015 [20] were selected partially based on comparison of
AMOV As, and the existence of Norwegian Bay as a separate genetic cluster was not among the
hypotheses tested (S7 Table of Peacock et al., 2015 [20]). In addition, all AMOV As for micro-
satellites in Peacock et al., 2015 [20] have negative Ogc values or purportedly explain negative
percentages of variance. We were unable to reproduce these unusual AMOVA results using
ARLEQUIN on the full dataset (e.g., Table J of S1 File).
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Fig 6. Circos plots of gene flow using 14 or 21 loci among: three clusters corresponding to our Structure results for K = 4 (excl. Norwegian Bay
samples), four clusters identified in Peacock et al., 2015 [20] (excl. Norwegian Bay samples), and five clusters corresponding to our STRucTuRE
results for K = 6 (excl. Norwegian Bay samples). Segment colours are as in Fig 4 and are sized proportionally to the population size estimates in Table D
of S1 File, though polar bear population sizes are estimated with very broad confidence intervals, particularly in the Polar Basin, where reliable estimates are
not available for most MUs. The width of each ribbon where it meets a segment on the circumference indicates the proportion of migrants into (but not out of)
each region. Black ribbons are significantly directional based on non-overlapping 95% Cls of immigration rates; grey ribbons are not significantly directional.

doi:10.1371/journal.pone.0148967.9006
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Although an analysis of sex-biased dispersal was presented in Peacock et al., 2015 [20], it
gave erroneous results because of incorrectly calculated Fgy values and the inclusion of popula-
tions with inadequate mtDNA sampling (Fig 7a). After correcting for these issues, we find
there is little evidence that gene flow is strongly male-biased using the method in Peacock et al.,
2015 [20]. In contrast, in AMOV As, mitochondrial ® g values were 8.3x nuclear Fgc values
(whereas @y is only 2.4x Fcr), which may suggest male-biased dispersal within—but not
among—genetic clusters (however, cf. Fig 7b). Unfortunately, this comparison is hindered by
different sampling regimes for mtDNA vs. nuclear DNA, including low within-cluster sam-
pling of mtDNA (Table 2). In addition, any direct comparison of differentiation between uni-
parentally and diparentally inherited markers must be interpreted with caution, as such
methods generally assume an effective-population-size ratio of 4:1, which is often untrue [90].
Though it would be better to perform sex-specific comparisons using nuclear markers, these
methods may be underpowered unless bias in gene flow is extreme (i.e., 80:20), and they may
also suffer from pseudoreplication [91, 92]. Therefore, the true extent of sex-biased dispersal in
polar bears remains undetermined. Previous genetic studies have also reported conflicting find-
ings of male-biased dispersal [19, 93], as have radio-telemetry studies of home-range size [94,
95]. Based on distances between recaptures, male polar bears appear to have only slightly larger
home ranges than females, and this is perhaps because females move less when accompanied
by cubs [3].

Are polar bears migrating en masse into the Canadian Archipelago?

Polar bears rely on sea ice as a platform for locomotion [96], hunting [97], mating [98], and—
in some areas—denning [99]. If climate change continues to reduce the extent and duration of
Arctic sea ice, polar bears are likely to respond with altered movement patterns, resulting in
increased mixing and gene flow between adjacent subpopulations [100]. To determine if
changes in movement were already occurring, Peacock et al., 2015 [20] compared recent gene
flow (i.e., over the past two generations) calculated using BavesAss with historical gene flow
(i.e., time since the most recent common ancestor) calculated using MIGrATE [101]. They found
an apparent reversal of gene flow over time, suggesting a recent influx of polar bears into the
Canadian Archipelago from Southern Canada. However, the sampling regime for their Baye-
sAss analysis was not described in the manuscript, and their results show known signs of non-
convergence [21, 22]. A correction to the Supplementary Material of Peacock et al., 2015 [20]
[102] published while our manuscript was in review states that individuals were randomly sam-
pled from within the four populations used, with sample sizes of 26, 34, 60, and 60, for the
Western Basin, Eastern Basin, Canadian Archipelago and Southern Canada, respectively.
Unfortunately, BavesAss typically works best when sample sizes are much larger than this [21],
and we were unable to reproduce these results using our own geographically balanced sampling
regime with >100 samples per region.

In fact, within the Polar Basin, our BaYEsAss results detected exactly the opposite pattern of
Peacock et al., 2015 [20]: namely, ~60-fold directional gene flow into the Eastern Polar Basin
from the Western Polar Basin. This pattern held true in all 40 runs that included an Eastern-
Western Polar Basin split. Similarly, our BAYEsAss results showed ~30-fold directional gene
flow from the Western Archipelago into the Eastern Archipelago, though this pattern only
held true in 8/20 runs; the remaining 12/20 runs suggested ~30-fold directional gene flow from
the Eastern Archipelago into the Western Archipelago. Estimates of these immigration rates
were close to the upper bound of 1/3 and—taken together—this suggests that all estimates of
gene flow within the Archipelago and the Polar Basin in both this paper and in Peacock et al.,
2015 [20] are untrustworthy, probably because of low genetic differentiation (Fsr ~ 0.01)
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between these regions [21-23]. We similarly failed to confirm directional gene flow from the
(Eastern) Polar Basin into the Canadian Archipelago; in all of our reanalyses, migration rates
between these regions are not significantly directional. Although not significantly different, we
did find that immigration into the Canadian Archipelago from Southern Canada (~4.9%) was
slightly higher than in the reverse direction (~2.1%). The robustness of this finding across our
different sampling regimes and the sampling regime of Peacock et al., 2015 [20] suggests that
there may be slight northward gene flow into the Archipelago. Finally, we note that even our
preferred BAYEsAss run (i.e., the 3-cluster run in Fig 6) may be interpreted as having not
reached convergence, since proportions of non-migration have been estimated with small vari-
ance near the upper bound (Table E of S1 File). However, we believe that these estimates of low
gene flow are realistic because the regions are largely separated by land and multiyear ice.

Among the first analyses conducted in Peacock et al., 2015 [20] were decadal comparisons
of population structure to determine if it was safe to pool samples collected between the 1980s
and the 2010s (S3 Table of Peacock et al., 2015 [20]). Their results showed that population
composition had not changed significantly over this period in any of the regions examined. If
polar bears had experienced substantial directional gene flow in response to recent climate
change, it seems unlikely that this would not have resulted in detectable changes to population
structure over this period, especially since Peacock et al., 2015 [20]’s high immigration rates of
~15% from both the Eastern Polar Basin and Southern Canada suggest that the Canadian
Archipelago would likely not be demographically independent [103]. Although Arctic sea ice
has been declining in thickness and extent in some regions since at least the 1950s [104, 105],
the rapid loss of sea ice since the mid-1990s has been unprecedented over the last 1,450 years
[106]. Therefore, we would expect to see changes in composition from the 1980s to the con-
temporary samples; however, no such changes were observed. Though our STRUCTURE plots
suggest a substantial amount of migration and admixture among clusters, there is no clear pat-
tern of directional gene flow. Further, these results might overestimate the amount of mating
between genetic clusters, since STRUCTURE may be sensitive but not specific with respect to
admixture [107], and cluster membership is estimated with extremely broad credible intervals
when using a small number of markers [16, 108]. Therefore, we find the suggestion of mass
gene flow into the Archipelago from Southern Canada and the Polar Basin uncompelling, and
we strongly caution against managing Arctic Archipelago MUs as if they were being replen-
ished by immigration.

Conclusions

The three—four major genetic clusters selected in Peacock et al., 2015 [20] were selected based
on faulty analyses, including miscalculated Fsr values, AMOV As, and significance levels. The
study was also compromised by highly unbalanced sample sizes and possibly by the inclusion
of first- and second-degree relatives, as well as retention of large amounts of systematically
missing data. One consequence of these data and analysis issues was the failure to detect a
distinct subpopulation of polar bears in Norwegian Bay near Canada’s expected last sea-ice
refugium. BavEsAss results suggesting a recent influx of bears into the Archipelago and the
Western Polar Basin showed known signs of non-convergence, and they were not supported in
our own runs of the program. We therefore find the suggestion of strong recent directional
gene flow into the Archipelago uncompelling. Many of these problems became obvious only
upon examining the paper’s supplementary material; the original authors of Peacock et al.,
2015 [20] should be commended for the well-documented results they made available, which
allowed us to detect the issues in their study. Recently, supplementary material has been
accused of being poorly peer-reviewed, thereby threatening the integrity of the scientific
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literature [109]. We hope that this example will serve as a reminder to both authors and review-
ers to scrutinize this supplementary material more closely in the future. In the interest of even
greater openness, we have deposited inputs, outputs, and scripts used to perform our analyses
at Open Science Framework (http://ost.io/kqcr4). We encourage both reviewers and readers to
further explore this invaluable dataset.

Supporting Information

S1 File. Complete set of supporting information figures and tables.
(DOCX)
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